博客
关于我
hdu 1788 Chinese remainder theorem again(gcd)
阅读量:389 次
发布时间:2019-03-05

本文共 890 字,大约阅读时间需要 2 分钟。

为了解决这个问题,我们需要找到一个最小的正整数 ( x ),它满足给定的同余条件。每个模数 ( M_i ) 大于 ( a ),并且 ( x ) 除以 ( M_i ) 余 ( M_i - a )。

方法思路

我们可以利用中国剩余定理的思想来解决这个问题。具体来说,我们需要找到一个数 ( x ),它满足以下条件:

  • ( x \equiv a \mod (M_i - a) ) 对于每个 ( i ) 来说。

为了找到这样的 ( x ),我们可以通过以下步骤:

  • 计算所有给定模数 ( M_i ) 的最小公倍数(LCM)。
  • 将这个最小公倍数减去 ( a ),得到最小的满足条件的数。
  • 这个方法的正确性基于以下观察:当模数 ( M_i ) 有多个时,计算它们的最小公倍数可以帮助我们找到一个数,它在所有模数下都满足特定的余数条件。

    解决代码

    #include 
    using namespace std;typedef long long ll;int main() { int I, a; while (scanf("%d%d", &I, &a) != EOF) { if (I == 0 && a == 0) break; ll ans = 1; for (int num; scanf("%lld", &num) && I-- > 0) { ans = (ans * num) / __gcd(ans, num); } printf("%lld\n", ans - a); }}

    代码解释

  • 输入处理:读取输入数据,直到遇到 ( I = 0 ) 且 ( a = 0 ) 的情况时停止。
  • 计算最小公倍数:初始化 ans 为 1,然后逐个读取每个模数 ( M_i ),并更新 ans 为当前 ans 和新模数的最小公倍数。
  • 计算结果:将 ans 减去 ( a ),得到满足条件的最小正整数 x,并输出结果。
  • 这种方法确保了我们能够高效地找到满足所有同余条件的最小数。

    转载地址:http://jlewz.baihongyu.com/

    你可能感兴趣的文章
    nginx 配置 单页面应用的解决方案
    查看>>
    nginx 配置https(一)—— 自签名证书
    查看>>
    nginx 配置~~~本身就是一个静态资源的服务器
    查看>>
    Nginx 配置解析:从基础到高级应用指南
    查看>>
    Nginx下配置codeigniter框架方法
    查看>>
    nginx添加模块与https支持
    查看>>
    Nginx用户认证
    查看>>
    Nginx的Rewrite正则表达式,匹配非某单词
    查看>>
    Nginx的使用总结(一)
    查看>>
    Nginx的可视化神器nginx-gui的下载配置和使用
    查看>>
    Nginx的是什么?干什么用的?
    查看>>
    Nginx访问控制_登陆权限的控制(http_auth_basic_module)
    查看>>
    nginx负载均衡器处理session共享的几种方法(转)
    查看>>
    nginx负载均衡的5种策略(转载)
    查看>>
    nginx负载均衡的五种算法
    查看>>
    Nginx运维与实战(二)-Https配置
    查看>>
    Nginx配置ssl实现https
    查看>>
    Nginx配置TCP代理指南
    查看>>
    Nginx配置——不记录指定文件类型日志
    查看>>
    Nginx配置代理解决本地html进行ajax请求接口跨域问题
    查看>>